1818219 - Debugging the payroll Schema

Version 1 from 25.02.2013 in English

Symptom

Information is required how to debug the payroll schema.

As a prerequisite to understand this kba you should have a basic debugging knowledge.
Reproducing the Issue

Run Payroll driver RPCALC*0 / H*CALCO in order to reproduce the issue.

Resolution

Using hard break-points to debug the Schema.

Whenever you can modify the system that you are analyzing (e.g. you are debugging a
development system), and you have authorization to modify rules and schemas you can

set a hard break-point.

For this, you have to modify your user-profile and set an ABAP prefix (AB4).

End Session il

_ System Help
% Create Session ;|@@@Qll@

Hold Data
SetData
Delete Data

Sces >
— Utilities(H) K]
List > Own
Services for Object \ Expand Favorites
J My Objects K
3 Own Spool Requests

Own Jobs

Short Message

Status...
Log Off

User: [T

Last Changed MARTINEZCA [23.03.2005]08:37:36|

Address | Defaults

Parameter ID Parameter value Short Descriptiol
AB4 CME ABAP prefix

Once you have a prefix of your own, you can set a break-point at a certain point in a
Schema by editing the Schema (Trx PEO1). For this you'll use the payroll function
BREAK followed by your ABAP prefix.

Example: Set a break-point in Schema EO0QO:

ovotjcon | | | | | [Paolischema: Spain_
wweezaloor ||| || rrogemupe-paveoLl
iooo030|copy [EING| | | | [Payrollinitialization
00040 CoPY €809 | | | [asicostaspan
000050/ CoPY [ELRA] | | | [Reading of last payroll resuits

(000060 BREAK|CME | |
If you run your payroll driver, the debugger will stop just before EANT schema.

Payroll for Spain
ﬁwlbm | & search helps

Payroll period
Payroll area 6|
O Current period
® Other period | 1]2008]
Selection
Personnel number 35900043
Payroll area ~ E9

General program control -
Pers. calculation schema |EQDD

Forced retro. acctg from | |

Now you can go to the next payroll function by exiting function break (F7).

Main Program

Then press key F5 and set a soft break-point at PERFORM as-funktion.

Main Program |RPCALCE®
‘Source code of \RPCHRTB9_ASLOOP
FORM ASLOOP

next_as_entry.
ENDIF. "XDOALRKOBO847

IF p_with_log NE space.

PERFORM fi11_log_keys USING ‘A’ A
asnum "!
aper_numb
next_as_entry.

ENDIF.
PERFORM refresh_function_text_table.

..

= DESCRIBE TABLE ptext LINES ptext_lines.

You can display the current function to be processed by displaying in your debugger
screen table AS (Header).

Table AS contains the Schema and its header contains the current function in the
schema being processed (AS-FUNCO).

Structured field [H as

Initial Length (in Bytes) 50
No. Component name Ty
FUNCO

FNUMB
PARM1
PARM2
PARM3
PARM4
PROTO
SKIP

Lngth |Contents
BREAK
06

CME

W~ OO W N
b I TR P TN S PR e T S T T &)
L T S S S S |

=g
Debugging Tratar Pasara Breakpoints Opciones Desarrollo Sistema Ayuda

g 1 4H e CHE DDLHD BEE &
Modo debugging

| [[+=] [na] [«] [] o] (] 0
Tabla | Breakpoints || Watchpoints || Llamadas | Resumen || Opciones
Programa ctrl. 'RPCALCE® P Iy
Céd.fuente de 'RPCHRTB9_ASLOOP } - 43| w B9
FORM ASLOOP

next_as_entry. =Y
ENDIF. "XDOALRKB00847

Tabla interna ks j\@licé»[Tipo | STANDARD | Formatﬁojg‘i
|1 |FUNCO FNUMB PARM1 PARM2 PARM3 PARM4 PROTO SKIP

& Poeo2|c3 | | | | l | 1[4]

4 |pLock|7z |BEG | | | l | 1[+]

2 |BLOCK|73 |END | | | | | 1

3 [BLOCK|73 |BEG | | | [[1

4 [ENAME|16 | | | | l | 1

5 WPBP |60 | | | | l | 1

6 |[PRO61|B4 | | I I l I 1

7 |pe4se|c2 | | | | l | 1

8 [PORE2|BS | | | I l I 1

9 |pee92|Cc3 | | | | l I 1

10 [GON |1C | | I I l I 1

11 [BLOCK|73 [END | | | l I 1

12 |BLOCK|73 |BEG | | | l | 1

13 |IMPRT|22 | It | l I 1

14 |PORT |4A |EO06 |PO6 |NOAB | | | 1
15 [SETCU|57 | | | | l I 1

16 |BLOCK|73 |END | | | | | 1

17 [BLOCK|73 |BEG | | | l I 1

18 [POR92|C3 | | | | [| 1

19 [EADEV|C® | | | | l | 1

20 [BLOCK|73 |END | | | | | 1

N T " m—

Now you can stop right before next function to be processed in schema by pressing F8.

FORM ASLOOP
ENDIF. "XFG note 607609
PERFORM refresh_function_text_table. "XDDALRKBODS47
= @ PERFORM as-funktion.

Structured field Hbs
Initial Length (in Bytes) 50/
No. Component name

FUNCO

FNUMB

PARM1

PARM2

PARM3

PARM4

PROTO

SKIP

“Lngth |Contents
P0092
c3

DR

TOOOOO X 0|2
W = & & & Hp - O
il

0 ~ @ O W N =

In this case, you are about to debug function PO092. To get inside it just press Fb5.

FORM FUP0092

endprovide.

perform first-st.

first-st-begda = st-begda.
endform. "END OF FUPBO62

form fupB092.
* Lectura del Infotipo P3092
=p provide * from p0092
between pn-begda and pn-endda.
endprovide.
endform. "END OF FUPBO92

In this case the function code to be debugged is very short. Go to the next function by
pressing F8.

Of course you could have set a soft break-point directly at function P0O092--- pe04.
You can set a break-point in a payroll rule, as well. For this you'll use the payroll
operation BREAK, followed by your ABAP prefix.

Edit Rule: ZOSO ES Grouping 3 Wage Type/Time Type M101

cmmnd |

Line VarKey CL T Operation Operation Operation Operation Operation"{-)peration ¥

------------- B e e e e e e

(668016]I Jereax: cue

When a pernr is rejected in the payroll log.

Just set a break-point in the command "reject". Start payroll processing in debugging
mode /H, then go to... finally press F8 key, you'll reach the reject command. After that
you have to take a look at "Calls" to guess where the error is coming from.

For example, you run the payroll drive and get a log like this:

— — _—_ ———— o —— — - —_—

L= 0172007 { 01.01.2007 - 31.01.2007) Regular payroll run in 01/2007

—0 Read relevant data
—3

BREAK CHME

—C@B Seniority calculation
—m

L—EJCHHW

= Processing A

I——

Go back to the selection-screen and start payroll in debugging mode with /H.

=7
Program Edit Goto System Help

@ H 240 e DHE DL BR @m
Payroll for Spain

Selections from " & Search helps l
Payroll period
Payroll area EO|
O Current period
@ Other period ' 1]2009]

Selection
Personnel number 135900006

Payroll area ! _|

ol o]

General program control
Pers. calculation schema [E000]

[Test process (no updates)

Now you are debugging the payroll and you need to reach the point of rejection:

=
SetHiInE S Sy SRl SO S ORI S SRS el
g Sa crs 3 DDHD FHE @B
ABAP Debugger ©=SStEEE SRR —
Create/delete Shift+F4 Subroutine... Shift+F6
[c=|[E[0 Watehp pelete all Shift+F2 | Function module..... Shift+F7
- Deactivate/Activate Method...
o [Tape]| Deacweek et
MainProgram __[RPCALGE S2°M@E & S
Source code of | RPCHRTE Actvateall 7;;AS)_(stem excﬂ?n]
IF sy-subrc == 0. "XTWALRKBOO850
SELECT SINGLE * FROM t500t WHERE molga = calcmolga "XTWALRKBOO850

AND spras = sy-langu. "XTWALRKOOO850
MESSAGE ID '3G' TYPE 'E' NUMBER '8008' WITH payty t500t-1text."XTWA
ELSEIF payty = cd_c-supplemental.

Stop it at the reject command:

[S Create Breakpoint = ‘
Breakpoint at statement \REJECT] |

Main Program
Source code of

Now press the "Calls" icon:

FORM NEW_ABLEHNUNG
* AB_1153008: external call from HR_PAYROLL, result to memory
IF ecalled = 'X'.
READ TABLE sim_pernr WITH KEY pernr = pernr-pernr.

Act call stack

No. |Program Type Processing block E

=p |17 RPCALCE® FORM NEW_ABLEHNUNG [«

16 |[RPCALCEO FORM FILL_MSGTAB_FINAL_STEP £
15 |RPCALCE® FORM FILL_MSGTAB

14 [RPCALCEO FORM ERRORSI

13 |RPCALCE® FORM FUCHKPC

12 [RPCALCEO FORM AS-FUNKTION

11 |RPCALCE® FORM ASLOOP

10 [RPCALCEO FORM MONATSABRECHNUNG

9 [RPCALCED FORM RUECKRECHNUNG

8 [RPCALCED FORM MAIN

7 |RPCALCE®G FORM {%_GET_PERNR

6 |SAPDBPNP FORM FILL_INFOTYPE_TABLES_AND_PUT

5 |SAPDBPNP FORM PUTPERN

4 |SAPDBPNP FORM LOOP_AT_INDEX_AND_PUT

3 [SAPDBPNP FORM PUT_PERNR

2 |SAPDBPNP FORM %_ROOT

1 |RPCALCEB EVENT SYSTEM-EXIT

The following routines:

FORM NEW_ABLEHNUNG

FORM FILL_MSGTAB_FINAL_STEP
FORM FILL_MSGTAB

FORM ERRORS

are common to all the rejections so they will not add any value info, so we go to the first
relevant form:

FUCHKPC

Double-clicking on it we get to the ABAP code and set a break-point just before the
error process is triggered (Or maybe analyzing the abap code that triggers the error is
enough):

L=
Debugging Edit Goto Breakpoints Seftings Development System Help

g 1 4H e SHR Dhoa BE @
ABAP Debugger

HErEE
I Fields " Table][Breakpoints]l Watchpoints | Calls Overview " Settings
Main Program RPCALCED ' ' 4| | » fE
‘Source code of ARPC'HASAGQ_';EUCHKPC“ i al 1w
FORM FUCHKPC
@ CHECK: pP0o3-pkgab <= pn-endda. "muss Pers.Kalender generiert
"werden?
PERFORM 1og_chkpc_err IN PROGRAM h99plogd TABLES error_ptext

Act call stack _i
No. Type Processing block Class m
17 |[FORM NEW_ABLEHNUNG [+]
16 [FORM FILL_MSGTAB_FINAL_STEP (~]
15 |FORM FILL MSGTAB
14 [FORM ERRORS
=p (13 [FORM FUCHKPC

When you start payroll again you'll be able to debug the code that triggered the rejection
which will help you identifying the cause of the error.

Find out at which point of the payroll Schema, a Wage Type is generated or a WT
is set to a specific value.

Watch-points will help you a lot on this. If for example you find that WT /341 equals
1.375,00 EUR at the final payroll results and you want to know where in the payroll
schema WT /341 amount was set to 1.375,00 EUR.

Start payroll in debugging mode by going to the payroll driver selection-screen and
setting /H at the ok-code. Then press F8 to start the program.

l=
Debugging Edit Goto Breakpoints Seftings Development System Help

g 148 Ce0 EHR Do BE @®

ABAP Debugger

Fields | Table ” Breakpoints || Watchpoints ” Calls ” Overview || Settings
Main Program 'RPCALCE® ' ' 4| JIC
Source code of |RPCHRTEZ | 401 »|EH
FORM %_SEL_SCREEN_SCHEMA

IF sy-subrc <> 0. "XTWALRKBE0850
SELECT SINGLE * FROM t500t WHERE molga = calcmolga "XTWALRKOGO850

AND spras = sy-langu. "XTWALRKOOO850
MESSAGE ID ‘3G' TYPE 'E' NUMBER '800' WITH payty t500t-T1text."XTWA
ELSEIF payty = cd_c-supplemental.
MESSAGE e743(hrpay99calc).

B Supplemental-Laufe dirfen nicht einzel abgerechnet werden
ENDIF. "XTWALRKBOE850
ENDIF. "XTWALRKGEOOS50
AT SELECTION-SCREEN ON schema. "XDDAHRKBB7552
= PERFORM check_schema_allowed USING schema. "XDDAHRKBO7552

Now create a watchpoint.

[watchpoint

And fill the required condition.

|= Create/Change Watchpoint y

[J Local watchpoint (only in specified program)
B [RPCALCED :}
Field name ;iT--LGKR;r' |

Relational Operator = |
[[]Comparison field (Comparison value if not selected)
Comp. fieldivalue 1341

Create a second watchpoint because the condition is: it-lgart = /341 and it-betrg =
1.375,00

I(= Create/Change Watchpoint A

[] Local watchpoint (only in specified program)

Program |RPCALCEQ y
Field name |IT-BETRG]
Relational Operator EHd

[Comparison field (Comparison value if not selected)

Comp. fieldvalue 11375, 00|

Now both condition have to be linked by the "And" operator.

Watchpoints
INo. |Lo |Program Field name 0 |FId {Comp. field
RPCALCER IT-LGART /341
RPCALCEQ IT-BETRG =

i
o0

14

N B W N

0 o
IR

ODea =

.............

Current field contents of the last watchpoint reached:

Now continue by pressing F8. The program will stop when the watchpoint condition is
fulfilled.

=4
Debugging Edit Goto Breakpoints Settings Development System Help

& 3 4B CEee CHE DDON BE @F
ABAP Debugger

Fields | Table " Breakpoints ” Watchpoints ” Calls JI Overview ” Settings
Main Program 'RPCALCEQ 4 (Sl
Source code of RPCMSVED ' 578 | w
FORM FUEPROO

endcase.
perform prorrata using activ
baja
calen
changing prorr.
clear it.
it-abart = wpbp-abart.
it-Tgart = '/341".
it-betrg = prorr.
= collect it.
perform prorrata using activ
2]
calen
changing prorr.

You'll notice that in the watchpoint condition | used WT table IT instead of table RT. If |
had set the same condition for table RT, the program would have stopped later on in the
schema when WT /341 is collected to be stored in table RT which is useless.
Sometimes, WTs are directly created in table RT so in that cases, setting the condition
for table RT might be useful. Many times, WTs are created within a rule operated by
function PIT or PRT. In that cases, you'd better set the condition for table OT (OT-
LGART, OT-BETRG...). If you do so, the program will be stopped at the relevant
operation within the rule. To see which rule is it, look internal table AS header. To know
what operation is it, display the structured field OP.

Fields]| Table || Breakpoints ” Watchpoints || Calls jl Overview " Settings I

Main Program RPCALCED - 4 | » B
Source code of RPCBU209 206 | w
FORM VCOLLECT///
ot-lgart = op-lgart.
ENDIF. "SY-SUBRC EQ 0.
= ELSE.
Structured field bp
Initial Length (in Bytes) 20
INo. Component name Ty |Lngth |Contents i
1| lopcop c 5 ADDWT =
2| MODIF c 1 [~
3 |LGART c 4 |1398 ﬂ

By the way, if a WT is set to a specific value in a PIT rule and instead of setting the
watchpoint at OT table you do it at IT table, the watchpoint will stop at the end of the
rule as you can see in the code below:

FORM fupit.

LOOP AT it.

plog4 perform plog_header_cycle(h99plogO0)

using it-lgart calcmolga.

MOVE ccycl TO i52c5.

MOVE-CORRESPONDING it TO i52c5.

ot = it.

PERFORM regel.

plogl perform plog_check_rule_performed(h99plog0).
ENDLOOP.

REFRESH it.

PERFORM ot-in-it-append. "append statt collect, beinhaltet refresh ot.
ENDFORM. "END OF FUPIT

So it's more accurate to set the watchpoint at table OT than at table IT in these cases,
but remember that rules are flexible and there are operations to append WTs directly to
table IT.

Problems with Retros.

When there are many retro periods in the payroll run you are analyzing, the same piece
of code will be reached once and again and you have to press the F8 key a lot of times
before you reach the point you where the issue arises. Table APER manages the
periods processed in a payroll run and it's header holds the currently processed period.
In the following pic you can see that period 01.2008 is being processed in a payroll run
started from in-period 01.20009.

E Field names) e = Field contents

(EEERCPATER | 200801 RZ
/APER- IAPER | 200901 &

SY-SUBRC 0 SY-TABIX 23 | SY-DBCNT |1

You can use APER-PAPER and APER-IAPER as watchpoint conditions so if for
example you set a break-point at function ESTOO (Which calculates Spanish taxes) and
there are 10 retro periods to be calculated and you want to debug just the current
period:

1. Deactivate (Not delete) the break-point at function ESTOO.
2. Set APER-PAPER = APER-IAPER as a watchpoint condition.

As an alternative to using table APER, you can assign a counter to the break-point so

that it stops only after "n" ocurrencies:

e.g. Stop in function ESTOO after ESTOO being processed 13 times:

Breakpoints
No. in (absolute path) Count.
@ | 1 |FUESTEO \PROGRAM=RPCALCED |13

Finally, when the APER-PAPER is set to the payroll period you want to analyze
(because the watchpoint stopped), activate the break-point and go ahead: F8.

Reaching a payroll function or operation once the debugger is started:

Payroll functions are coded as form FUXXXX being XXXX the name of the function. e.g.
function wpbp is coded as form fuwpbp. Payroll Operations are coded as OPXXX being
XXXX the name of the operation. Knowing this makes easy to reach any Function /
Operation.

=
Debugging Edit Goto Breakpoints Settings Development System Help

& | Save Ctr|+Srl|@ia@gj|E|®ﬁ
ABAP Debugger ¥ Statement.. o A

Create/delete Shift+F4

v|[0 watchp perete all Shift+F2 | Function module..... Shift+F7
Deactivate/Activate Method...
Fields [Table | s e con
MainProgram [RPCALCE oo ot S =
Source code of [RPCHRTE. Al ol {jj Sysfei.exce pilon
IF sy-subrc <= 0. "XTWALRKOBOO850

SELECT SINGLE * FROM t500t WHERE molga = calcmolga "XTWALRKBOO350
AND spras = sy-langu. "XTWALRKOBG350

Breakpoint at subroutine/method/module (processing block)

Program RPCALCEQ
Subroutine/Method/Module FUWPBP

Then press F8 key and you get to the beginning of the routine.

How to debug a Personnel Calculation Rule:

You already know that a PCR or cycle is not working as desired but do not know at what
point of the rule the problem is. When a PCR is processed, a sequence of payroll
operations will be processed. You can see how a rule works processing one operation
in each step and monitor the intermediate results. Then you may realize the problem is
that the rule is not correct or you can debug inside the operation.

Firstly you have to reach the rule you are going to debug. For that you can set a hard
break-point as stated at the beginning of this document or a watchpoint (AS-PARM1 =
XXXX where XXXX is the name of the rule) AND (OT-LGART = YYYY where YYYY is
the WT to be processed by the PCR). It is important that both watchpoint conditions are
linked by the condition AND

Example:

We are going to debug PCR ESPB at Payroll Schema EOQO for payroll driver
RPCALCEDQO.

Going to the payroll log we see that WT S121 is calculated at PCR ESPB:

= 1242006 (01.12.2006 - 31.12.2006) Regular payroll run in 12/2006

—C8 Read relevant data

—C8 Read last payroll results

—C8 Seniority calculation

—0 Time data process

—E Read additional payts/deds{IDD14,60015)
—C Travel expenses

—E= Special payments calculation

—C8 IMPRT L Import last result

—C8 DATES Complete dates data table

—Ca SPA 2 SPECIAL PAYTS (calc. entitlement part)
—ca PAT ESPB Create valuation hases

—C8 IMPRT Ik Import last result (EMFI)

—SPUDD DROD Special payment transfer period

—C SPC 2 SPECIAL PAYMENTS (valuation and gener.)
—C PIT XSPD P48 HNOLB Delete split CNTR3

—CB EPROO ESPE 1 Calculation of Social Insurance prorate

PIT ESPE Create valuation bhases

i s |
W= Table IT

{001 Yaluation ho1 27,55

{001 Daily hasis@i 154,02

ANG1 Seniority: 01 3.183,00 4,00 3.183,00
ANTI Seniority O1 3.183,00
M101 Basic standd 1.391,49
M102 Standard hoO1 200,00
{3CN Days month 31,00

{3CA Monthly day 30,00

{38N Active days 31,00

{3AC Active days 30,00

5121 Basic stand0o1 01 1,00

5122 Standard ho01 01 1,00

L0 P P R P L P P P P P P

™| 8122 Standard honus SP 2
Rule ESGPCR YaKey Operation

ESPB 3 RTE=1.00
ESPB 3 ADDWT&FACT
ESPB 3 GCYBESP2
ESP2 3 ELIMI *
ESP2 3 RESET &R
ESP2 3 AMT= M102
ESP2 3 AMT+ INCE
ESP2 3 RESET AR3
ESP2 3 STAB SP
ESP2 3 RTE=BBSGRD
ESP2 3 MULTI RAR
ESP2 3 RTE{/100
ESP2 3 ZERO= A
ESP2 3 RTE/& FAC1
ESP2 3 ADDWT *
ESP2 3 ZERO=&FAC1
Dutput

™= Table IT
A Wage type APC1C2C3ABKOReBTAWYTvn One amount/one number Amount
3 /001 Yaluation ho1 27,55
3 /DRI Daily basis0Oi 154 02
3 /3AC Active days 30,00
3 /38N Active days 31,00
3 /3CA Monthly day 30,00
3 /3CN Days month 31,00
3 AND1 Seniority: 01 3.183,00 4,00 3.183,00
3 BNTI Seniority 01 3.183,00
3 M101 Basic standdi 1.391,49
3 M102 Standard ho01 200,00
3 5121 Basic stando1 01 1.391,49
3 5122 Standard bo01 01 200,00

So now, let’s start the debugger and set the watchpoint condition AS-PARM1 = ESPB
and OT-LGART = S121, here is how your debugger screen will look when the
watchpoint conditions are reached:

ABAP Debugger

Fields | Table || Breakpoints || Watchpoints || Calls H Overview || Settings
Main Program 'RPCALCE® [4 INE
Source code of |[RPCMASBY_FUPIT } A S [=
FORM FUPIT -~

* IT EINTRAG FUER EINTRAG WACH DEN HIERFUER IM DER TABELLE I52C5

* YORGESEHENEN REGELM. DURCH DIE REGELN WIRD DIE BEARBEITUNG IM

* EINZELNEN VERANLASST. DABEI ENTSTEHT EINE AUSGABETABELLE 0T, DIE
* DASSELBE FORMAT WIE DIE EINGABETABELLE HAT. SIE WIRD ZUR EINGABE-
* TABELLE DER NAECHSTEN PHASE.

ccycl = as-parmi.

* perform phase-heading. "XDDALRKD30399
'''''''' LOOP_ AT 7t
plogd_perform plog_header_cycle (h99pTogl)
using it-lgart calcmolga. "XDOALRKODOB4T

MOVE ccycl TO i52c5.
MOVE-CORRESPONDING it TO i52c5.
ot = it.
= PERFORM regel.
plogl_perform plog_check_rule_performed (h98pTogd) . "XDDALRKDDOB47Y
ENDLOOP .
REFRESH it.
PERFORM ot-in-it-append. "append statt collect, beinhaltet refresh ot.
ENDFORM. "END OF FUPIT

Rule ESPB is processed by PIT Function which means that table WTs in table IT will be
processed in a loop. Each time a WT is processed the table IT header will be copied to
auxiliary table OT and within the PCR processing the individual operations will normally
put their results in table OT. At the end of the PCR processing, table OTwill substitute
table IT. Relevant fields for IT and OT are (LGART, BETRG. BETPE, ANZHL...).

Now go inside PERFORM regel by pressing F8 and search PERFORM boper with the
arrow down

-> Set a break-point on PERFORM boper.

FORM REGEL ~
* MOVE t52c5+3 TO i52c5. "WOGLEBKOOSOES
i52ch = th2ch5_wa-rules. "l
* perform pr-regel. "XDOALRKO3D399
ELSE.
PERFORM regel_error(h99plogB) TABLES error_ptext
USING ‘R21'
i152c5(18) .
PERFORM errors TAELES error_ptext.
ENDIF.
ENDIF.
ENDIF.
ENDIF .
IF nextr NE 'N°'.
WHILE nextr NE 'N'.
= lastrule = i52ch.
nextr = 'N'.
({7} PERFORM boper. "Operationen einer Regel abarbeiten.

Make sure you display at the bottom of the debugger screen the fields you want to
monitor:

m Field names 10 oad Ivlﬂl Field contents
g ot-1gart 8121

ot-betpe | 1.00

ot-betrg I 0.00

‘ot-anzhl | 0.00
SY-SUBRC|@ | sY-TABIX@ | SY-DBONT[25 | SY-DYNN

You can also display the current operation at the header of table OP or i52c5-0p1.
Now you can deactivate the watchpoint.

Click in F8 every time you want to go to the next operation (And F5 if you want to take a
deeper look as to how the operation works internally):

[li52c5-0p1 |RTE=1.00 |
|ot-1gart 5121 |
lot-betrg [0.00]
\ot-betpe | 1.00
[z

1152c5-0p1 |ELIMI * |
‘ot-1gart |s121 |
|ot-hetry | 0.00 |
|ot-betpe [1.00]

4z
fi52c5-0p1 |RTE=BBSGRD |
ot-1gart 5121 |
ot-betrg [1391.49]
ot-betpe I 1.00

4=
[i52c5-0p1 |ZERD=&FACT
\ot-Tgart |s121
|0t -betrg I 0.00
|ot-betpe | 1391.49

Using counters:

It might happen that you set a breakpoint at a certain part of the code where the payroll
execution goes through again and again. For example in retrocalculation or in case a
your break-point is in a routine that is placed inside a loop. E.g. you placed a break-
point inside a piece of code that is executed within a loop and you want the debugger to
stop only the 10th time that the break-point is reached. You can specify a counter for
your break-point.

Click on the break-point button:
=
Debugging Edit Goto Breakpoints

=T
' =0 !
' M

Settings

Fields || Table | Watchpoints[
Main program [SAPI.WBABAP
Screen number |0100|

PAI
=p PROCESS AFTER INPUT.

Set 10 times in the count. field.

FUNCTION S_UI CLASS DEPENDENCIES
<fs ui_flag> IYPE flag.

DATA:

INo.I Iin (absoclute path) ICoun__.I

@ 1LURL_GENERATIONU23(19) 10

Of course, if the break-point is reached less than 10 times, it will never stop, but you are
supposed to know the number of times the break-point will be reached before hand.

When an issue happens for a specific pernr

The issue only happens with a specific pernr X, however if you run payroll driver for the
pernr X individually, you don't get the error.

1. (Optional) You can set the break-point beforehand in the piece of code you want to
debug.

(Conditional) If you didn't do step (1) start payroll driver with /H.

(Conditional) If you did step (1) deactivate all break-points.

Set a watch-point with condition pernr-pernr = X.

(Conditional). If you did step (1) Activate all break-points, otherwise set a break point in
the piece of code you want to debug.

ok wh

Can all this be applied to the Time Evaluation?.

Yes, RPTIMEOO works with the rules in the same way as the payroll drivers RPCALCXO0
I HXXCALCO. In this case you may find useful to know that PER play the same role as
table APER for payroll. Therefore you can use the header of PER to stop the processing
at a specific day:

e.g. Set a watchpoint at PER-BEGDA = 20080901 or ACDATE = 20080901.

Good to know:

You can expand the payroll an time schema by running program RPDASCO0O0.

Skipping blocks of code:

As you can see in the picture below, in new releases you can skip a piece of code by
placing the cursor in the code line you want to jump:

= Debugpng | Edit Goto Breakpoints Settings Development System Hep

¢ Control » Single Step 5 B EE R
Sessons Exacute F6
| Datzbaze » Retumn F7
g Reserve Process Exchlisyve Run {to Cursor) F8
Debugging off Execute PAY/PBO module
Resgtart Goto Statement | Settings
Mi Switch to New ABAP Debugger | 4 l-i 2 ‘ﬁ
S¢C pat Shet+F3] e~ |E8

‘FUNCTRﬂfTTHT!EH:TCUUE:UETRE""'

BATA: 2EGIN OF L_TCVAR,
ICODE LIXE TSIC-ICOIE,
CL_INDEP(1) TYPE C,
TCVARIANT (30) TYEE C,
END OF L _TCVAR.

SELECT SINGLE * FROM TSTC WHERE TCODE = TCODE.
IF SY-SUBRC <> 0.
RRISE NO_TRANSACTIION.
ENDIF.

check whether function exist

CALL FUNCTION 'FUNCTION EXISIS'
EXFORTING
FIINCNENE = 'SRT GET REPORT OF TOODE!

This is not a feature valid only for payroll or HCM module. Skipping a block code is
useful:

* If you have an error and you suspect which the code responsible for the error is. Just
skip it and you'll know if your suspicion ins true or not. If the code was introduced by an
SAP note, you may have found a side-effect. And it's not good to modify a standard
program just to do this kind of tests.

* After a long debug session you executed a part of the code that was important without
pay attention. In this case you may jump back to a code line thta was already executed
as long as you do not jump between different subroutine levels.

