

HR Query Generator
Defining Switches

© 2002 SAP AG

Version: July 22, 2002

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 2/22

Table of Contents
1 INTRODUCTION...3

2 DEFINING SWITCHES ..4
2.1 GENERAL TECHNIQUE..4
2.2 GENERATING QUERIES AFTER SWITCH CHANGES..5
2.3 CHECKING THE EFFECTS OF A SWITCH ON A QUERY..5
2.4 NOTE..5

3 OVERVIEW OF SWITCHES ...6
3.1 GENERAL SWITCHES ..6
3.2 INFOTYPE-SPECIFIC SWITCHES ...6

4 PROCEDURE OF A GENERATED QUERY..7
4.1 SKETCH OF GENERATED CODING..7
4.2 STRUCTURE AND PROCEDURE OF GENERATED CODING ..8

5 GENERAL SWITCHES...9
5.1 REPORT_CLASS ...9
5.2 BL_ALLOW_DUP_LINES ..9
5.3 PROCESS_LOCKED_RECORDS ...10
5.4 PROC_PERNR_PARTIAL_AUT...11
5.5 PERSON_ONLY_ONCE..11

6 INFOTYPE-SPECIFIC SWITCHES..13
6.1 LAST_RECORD_ONLY..13
6.2 PROVIDE ...13
6.3 PROVIDE_FIELD ..14
6.4 PRIMARY_INFTY...15
6.5 TIME_DEPENDENCE...15
6.6 DATA_REQUIRED..17
6.7 SPLIT_DATA_REQUIRED...17
6.8 NO_DUPLICATE_LANGU...18
6.9 NO_INDIRECT_EVALUATION...18
6.10 IGNORE_WAGE_TYPE_OPERA...19
6.11 CASE_SENSITIVE_SEL ...20
6.12 ADD_FIELDS_SPLIT_DEP ..20
6.13 SPLIT_DEPENDENT_AF..21
6.14 SPLIT_INDEPENDENT_AF ...22

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 3/22

1 Introduction
Using the tools Ad Hoc Query and SAP Query, you are able to dynamically define reports (so called Queries) and
evaluate any data that is stored in infotypes. If a query is executed, data is read from the database according to the
specified select-options, if used, additional fields are calculated and finally all data is printed in an output list. To
implement this process, complex ABAP coding is required. Due to the flexibility of the query tools this coding cannot
exist statically in the system but has to be generated at runtime of the query. This task – the generation of the coding – is
done by the query generator.

The generated coding determines, which data is read from the database, which additional fields are calculated at which
point of time and how the presentation of data from those infotypes being involed in the query will look like. Due to the
fact, that infotypes might have different time constraints, there might be different demands. E.g. an infotype with time
constraint 3 (there is an arbitrary set of data records with arbitrary begin- and ending dates) has to be handled differently
than an infotype with time constraint 1 (for each point of time exactly one data record exists).

Therefore in the process of generating the coding, the specification of each infotype is readout and appropriate coding is
generated according to the settings of the infotype. This defines a standard behavior that in most cases gives a
reasonable result. But it is likely, that in some cases an infotype is handled in a way that is not favored by the user. In
such cases the user is enabled to explicitly influence the process of generating coding in a way, that his needs are
fulfilled.

This influence on the process of generating coding is realized via the usage of standard switches when defining an
InfoSet. The following chapters will start with an explanation of the technique to define theses switches and an
overview of existing switches. For a better understanding of the influences of these switches, a sketch of the generated
coding is presented. Finally a detailed description of each switch and its influence on the process of the generated
coding is given.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 4/22

2 Defining Switches

2.1 General Technique
Defining Switches is done within the InfoSet maintenance tool (transaction SQ02). Switches are part of the InfoSet and
therefore valid for all Queries, that base upon this InfoSet. Due to the fact, that manipulation or introduction of a switch
might have inpact on all existing Queries, that base upon the InfoSet, any changes on switches should be done very
carefully.

The definition of switches is located within the same dialog, where Coding has to be stored, that should be executed at
Event DATA. You can use function ‘Goto’ -> ‘Code’ -> ‘Data’ to access this dialog. All switches are defined using a
dedicated syntax:

NAME_OF_SWITCH = 'value'

Whereas NAME_OF_SWITCH has to be replaced be the name of the switch and the value has to be specified using
single quotation marks. Furthermore, each line containing the definition of a switch has to start with the prefix *HR.
For example the proper definition of the switch LAST_REORD_ONLY with value ‘X’ looks like:

*HR LAST_RECORD_ONLY = 'X'

There exists two different types of switches: switches that are defined for a single infotype and switches that are valid
for the whole InfoSet. To distinguish these types of switches, an ID has to be defined in front of the switch definition.
For switches being valid for the whole InfoSet this ID is [COMMON]. For switches that are defined for a single
infotype, the ID is the name of the infotype within square brackets: [Pnnnn] where nnnn has to be replaced by the
infotype number. E.g. the correct and complete definition of switch LAST_RECORD_ONLY with value ‘X’ for
infotype 0001 is:

*HR [P0001]
*HR LAST_RECORD_ONLY = 'X'

Following the ID [COMMON] or [Pnnnn] an arbitrary number of switches might be specified. Each switch definition
always refers to the last specified ID. Besides the possibility of specifying a switch for a single infotype, it is as well
possible to define a switch for a set of infotypes at the same time. The following notations are supported:

Specification of several infotypes

*HR [P0000, P0004, P0006]

Specification of a range

*HR [P0006 – P0009]

Use of templates/placeholders (‘#’ for an individual character, ‘*’ for any character string)

*HR [P00++]
HR [P]
HR [P0+1]

The counting method can also be combined with the two other methods, which means for example that the following
notation is also allowed:

HR [P0000, P0002 – P0005, P1]

It is not necessary for all of the switches belonging to an infotype to be set together behind one and the same ID. Using
ranges or placeholders enables you to specify an infotype more than once, which means that the switch definitions of an
infotype are distributed. They are then combined automatically. If the same switch is used more than once for an
infotype, only the last assignment is relevant. The multiple-value switches are an exception:

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 5/22

Multiple-value switches

Multiple-value switches store all of the values assigned to them in a list. This takes place internally using a table to
which the next assigned value is appended. The switch overview shows you whether a switch is a multiple-value switch
or not.

In accordance with the following statements:

*HR [P0000]
*HR PROVIDE_FIELD = 'MASSN'
*HR PROVIDE_FIELD = 'MASSG'

the PROVIDE_FIELD switch is assigned the 'MASSN' and 'MASSG' values for infotype 0000.

2.2 Generating queries after switch changes
Changing a switch in, or adding a switch to an existing InfoSet affects all of the existing queries (that are based on this
InfoSet). However, switches influence generated coding which means that changes to a switch do not actually have an
effect until the query is regenerated. To ensure good performance, a query is not regenerated each time it is executed.
Instead, it is only regenerated if its definition has changed which means that different output can be expected. However,
changes to the InfoSet (such as changes to switches) are not recognized automatically. Query regeneration can be forced
as follows: Access transaction SQ02, which enables you to maintain InfoSets, choose 'Goto' -> 'Query Directory', enter
the name of the InfoSet, and choose 'Execute'. The system lists all of the queries for this InfoSet. To generate the
queries, select them and then choose 'Edit' -> 'Generate Program'. Alternatively, you can access transaction SQ01,
which enables you to maintain queries, and choose 'Query' -> 'More Functions' -> 'Generate Program'. Before doing so,
make sure you restart transaction SQ01 so that if a buffer containing the old version of the InfoSet exists, it is deleted.

2.3 Checking the effects of a switch on a query
It is often unclear whether a switch defined in an InfoSet has an effect on query processing. If defined incorrectly or
with an invalid value, it is simply ignored when generation takes place. The same applies to switches that are defined
correctly but assigned to an infotype that is not used in the query. If you need to find out which switches were taken into
account when query generation took place, proceed as follows: Access transaction SQ01, which enables you to maintain
queries, and regenerate the query by choosing 'Query' -> 'More Functions' -> 'Generate Program'. Information on used
switches is included in the generated query report as comment lines. To display it, you must first determine the name of
the generated report by choosing 'Query' -> 'More Functions' -> 'Display Report Name'. This report can then be
displayed in the ABAP editor (transaction SA38). To access the comment lines with the used switches, search for the
text HR-LOG. There are three sections. In the first section, general messages are displayed. In the second and third
sections, general and infotype-dependent switches that were used when the query was generated are listed with their
values.

2.4 Note
When defining switches, you must proceed with extreme caution. Generated coding is extremely complex, which means
you should only use switches if you are sure about how they work and the consequences they have. In the following
sections, switches are described in as much detail as possible. However, many switches have such far-reaching effects
when coding is generated that you need extensive knowledge of HR and ABAP programming skills to understand them
properly. In cases of doubt, additional consulting may be necessary. In any event, switches should only ever be changed
by an experienced administrator.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 6/22

3 Overview of Switches

3.1 General Switches
General Switches are valid for the entire Query and are defined following the ID *HR [COMMON].

Switch Description
REPORT_CLASS Set up the report class (PNP and PNPCE)
BL_ALLOW_DUP_LINES Allow output of identical (duplicate) lines in the basic list
PROCESS_LOCKED_RECORDS Process locked data records too (PNP and PNPCE)
PROC_PERNR_PARTIAL_AUT Process persons too for whom a mere partial authorization exists (PNP und PNPCE)
PERSON_ONLY_ONCE Process each person just once (PNPCE)

3.2 Infotype-specific Switches
Infotype-specific switches determine how an infotype is processed. They must therefore be specified following an ID
that specifies one (or more) infotypes (for example, *HR [P0001]).

Switch Description multiple-
value

LAST_RECORD_ONLY Process the last data record only
PROVIDE Merge neighboring/overlapping data records
PROVIDE_FIELD Relevant fields when data records are merged X

PRIMARY_INFTY Relationship of infotype with primary infotype (for infotype views)
TIME_DEPENDENCE Time dependence
DATA_REQUIRED Existence of data records required
SPLIT_DATA_REQUIRED Existence of data records required in split period
NO_DUPLICATE_LANGU output data records in one language only
NO_INDIRECT_EVALUATION no calculation of indirectly evaluated wage types
IGNORE_WAGE_TYPE_OPERA ignore operation indicator (for deduction wage types)
CASE_SENSITIVE_SEL case-sensitive selection (take upper/lowercase into account)
ADD_FIELDS_SPLIT_DEP HR additional fields are calculated with split dependency
SPLIT_DEPENDENT_AF technical name of a split-dependent HR additional field X

SPLIT_INDEPENDENT_AF technical name of a split-independent HR additional field X

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 7/22

4 Procedure of a generated query

4.1 Sketch of generated coding
The following sketch is intended to give you a rough overview of the structure of generated coding. The terms in square
brackets are events that are described in more detail in the next section. Reference is made to them in the description of
switches.

[Declarations]
Declare infotypes, additional fields, etc.

[Data determination]
GET statement
Only take data in the reporting period into account
Optional: only take the last data record into account
Optional: eliminate multiple languages (delete superfluous data records)
Expand indirect valuation
Expand repeat fields

For each infotype:
 [Additional calculations]
 Calculate infotype-dependent HR additional fields
 Read text fields

 [Data compression]
 Provide (eliminate splits from data records)

[Split calculation]
Calculate periods (splits)

For each calculated split:
 For each infotype:
 [Data record determination]
 Determine infotype records to be output for this split

 [Additional data calculation]
 Calculate split-dependent HR additional fields
 Calculate additional fields/tables/structures

 [Data output]
 Create output line (with all output fields)

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 8/22

4.2 Structure and procedure of generated coding
The following text briefly describes the structure of generated coding with reference to switches that enable you to
control the procedure. For a more detailed explanation of the control options, see the description of each switch.

All of the variables that are needed to execute the program are declared at the event [declarations]. These are the used
infotypes for the most part, but also additional fields, text fields, and other auxiliary variables.

The data records of requested infotypes are read one after the other for each selected person/object at the event [data
determination]. Data records are only taken into account if they occur in the reporting period. The data records to be
processed can be restricted further (see the LAST_RECORD_ONLY switch). If an infotype with indirect valuation
exists, it is expanded. Repeat fields are also expanded at this event and written to separate data records. If the infotype is
language-dependent, the redundant languages are deleted at this point (see the NO_DUPLICATE_LANGU switch).

Each infotype used in the query is then processed separately. At the [additional calculations] event, all of the (non-split-
dependent) HR additional fields are calculated (see the ADD_FIELDS_SPLIT_DEP switch). Texts (if available and
requested) on these additional fields and on the infotype fields are also calculated.

At the [data compression] event, data records created as a result of splits can be re-merged if their fields that are
relevant to the query (see the PROVIDE_FIELD switch) are the same. This depends on the time constraint of the
infotype and the setting of the PROVIDE switch.

If the reporting period is not restricted to a key date, the periods/splits that are relevant to output are calculated at the
[split calculation] event on the basis of infotype data record validity (see the TIME_DEPENDENCE switch). The splits
are calculated so that they always cover the reporting period.

Each calculated split is then processed separately. At the [data record determination] event, the valid data records of all
(used) infotypes are determined for each split. The data records that are regarded as valid can also be determined by the
TIME_DEPENDENCE switch.

At the [additional data calculation] event, HR additional fields are calculated if they were not calculated at the
[additional calculations] event because of their split-dependency. All other additional fields, additional tables, and
additional structures defined in the InfoSet are also calculated at this event.

Finally, data is output line by line at the [data output] event.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 9/22

5 General Switches

5.1 REPORT_CLASS

Description

The report class concept, which enables you to determine the structure of the selection screen, applies to logical
databases PNP and PNPCE. A report class can be assigned to each report that is based on one of these two logical
databases. To maintain report classes in Customizing, choose Personnel Management -> Human Resources Information
System -> Reporting -> Adjusting the Standard Selection Screen -> Create Report Categories. Each query is a
generated report, which means that report classes can also be assigned for queries. A default report class is assigned in
the standard system. The REPORT_CLASS switch can be used to specify a report class explicitly.

Standard system conduct

If the InfoSet is based on logical database PNP, report class ___X2001 is used. If this report class does not exist,
report class ___22002 is used instead. If the InfoSet is based on logical database PNPCE, report class QUEPNPCE
is used.

Values

SAP and customer-specific report classes can be used. PNP and PNPCE use different report classes, which means you
must ensure that the specified report class was created for the logical database used in the InfoSet.

Note

Report classes are only supported by logical databases PNP and PNPCE. The switch cannot be used for InfoSets based
on any other logical database.

Ad Hoc Query does not use the logical database selection screen to define selection conditions. Specifying a report class
in Ad Hoc Query does not, therefore, have any recognizable effect.

Example

*HR [COMMON]
*HR REPORT_CLASS = '0MYREPCL'

5.2 BL_ALLOW_DUP_LINES

Description

The time-dependence of infotypes in particular can lead to a situation in which several data records exist for one and the
same personnel/object number whose fields used in the query are identical. They therefore give rise to identical output.
There is seldom any point in outputting identical lines because they do not contain any new information.

The ALLOW_DUP_LINES switch enables you to determine whether the process of outputting identical lines to the
basic list is permitted or suppressed.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 10/22

Standard system conduct

Identical lines are not output for a personnel/object number.

Values

'X' – Identical output lines (for a personnel/object number) are allowed

' ' – Standard: identical output lines (for a personnel/object number) are suppressed.

Note

This switch is only relevant to basic lists. The system does not attempt to find identical lines for statistics or ranked lists
because data is compressed (aggregated) before it is output anyway.

Identical lines are only monitored/suppressed for data pertaining to the same personnel/object number. This means the
basic list could very well contain identical lines if they originate from different personnel/object numbers.

Example

*HR [COMMON]
*HR BL_ALLOW_DUP_LINES = 'X'

5.3 PROCESS_LOCKED_RECORDS

Description

It is possible to lock individual data records in Personnel Administration. In the standard system, such data records are
not processed by the query. If you want these data records to be processed, you must set the
PROCESS_LOCKED_RECORDS switch.

Standard system conduct

Locked data records are not processed in the query.

Values

'X' – Locked data records are processed (together with data records that are not locked).

' ' – Standard: locked data records are not processed.

Note

This switch is only supported by logical databases PNP and PNPCE.

Example

*HR [COMMON]
*HR PROCESS_LOCKED_RECORDS = 'X'

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 11/22

5.4 PROC_PERNR_PARTIAL_AUT

Description

If data determination discovers that an authorization does not exist for all the data records of a personnel number, there
are two ways of proceeding: Either the entire personnel number is not processed, or the personnel number is only
processed with the data records for which an authorization exists. In the standard system, the entire personnel number is
not processed by the query. By setting the PROC_PERNR_PARTIAL_AUT switch, you can ensure that the personnel
number is processed with authorized data records.

Standard system conduct

Personnel numbers are not processed if authorization is missing for just one data record.

Values

'X' – All personnel numbers are processed with just those data records for which an authorization exists.

' ' – Standard: personnel numbers are not processed at all if authorization is missing for just one data record.

Note

This switch is only supported by logical databases PNP and PNPCE.

Example

*HR [COMMON]
*HR PROC_PERNR_PARTIAL_AUT = 'X'

5.5 PERSON_ONLY_ONCE

Description

The concurrent employment model allows one person to have more than one personnel assignment at an enterprise.
Each personnel assignment corresponds to a personnel number. The person is represented by the 'Central Person' (CP)
object type, which is related to all personnel assignments/personnel numbers. If the query is used to report on data, all
personnel assignments/personnel numbers (for which the selection conditions are satisfied) are included in the report in
the standard system. However, if you are only interested in personal data that is identical for all of a person's personnel
assignments, this data is output several times in the standard system: once for each of a person's personnel assignments.
To avoid this redundant output, the PERSON_ONLY_ONCE switch exists for logical database PNPCE. If it is set, the
relationship from personnel assignments to (central) persons is evaluated, and the system only outputs the data of one
personnel assignment for each (central) person.

Standard system conduct

Reporting on the connection between personnel assignments/personnel numbers and (central) persons does not take
place. All personnel assignments are processed independently of each other, as if they belonged to different persons.

Values

'X' – Each (central) person is processed just once. To be more exact: processing only takes place for the first
personnel assignment/personnel number to be found for each (central) person.

' ' – Standard: all personnel assignments/personnel numbers are reported on independently of each other.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 12/22

Note

Only logical database PNPCE supports concurrent employment processing, which means this switch can only be used
for PNPCE too.

From a technical point of view, personal data is stored redundantly for all personnel assignments. At this time,
(virtually) no data is stored for the person (the 'Central Person' object). Therefore, data on (central) persons must be
reported on via their personnel assignments.

You should only set this switch if you only want to report on personal data (which is stored redundantly for all
personnel assignments). After this switch has been set, reporting takes place on just one personnel assignment of each
(central) person. (The personnel assignment that is in actual fact reported on is more or less a matter of chance.) For this
reason, all other personnel assignment-specific data is suppressed.

Example

*HR [COMMON]
*HR PERSON_ONLY_ONCE = 'X'

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 13/22

6 Infotype-specific Switches

6.1 LAST_RECORD_ONLY

Description

In the standard system, all of the data records in the reporting period are processed by the query. Sometimes, however,
only the most recent (most current) data record in the reporting period is relevant, and only this data record needs to be
output. In ABAP reports the RP_PROVIDE_FROM_LAST macro is often used to filter the last data record out of a set
of data records. To achieve this result in the query, you can set the LAST_RECORD_ONLY switch.

Standard system conduct

All of the data records in the reporting period are taken into account/processed.

Values

'X' – Only the last data record (that is, the data record with the highest end date) in the reporting period is taken into
account/processed.

' ' – Standard: all of the data records in the reporting period are taken into account/processed.

Note

When data is determined, only the data record with the highest end date is taken into account. All other data records in
the reporting period are ignored. Other checks regarding, for example, time constraints or subtypes are not performed
for the data records. Processing continues as if this one data record were the only data record to exist. In particular, all
of the selection conditions are checked for this one data record only.

Example

*HR [P0001]
*HR LAST_RECORD_ONLY = 'X'

6.2 PROVIDE

Description

At event [data compression], a decision is made as to whether to merge/compress split data records before processing
continues. Two data records belonging to one infotype are only merged to form one new data record if they have
neighboring or overlapping validity periods (BEGDA_1 <= BEGDA_2 AND ENDDA_1 >= BEGDA_2 - 1).
Furthermore, the data records' field values that are relevant to the query must be identical. Infotype fields are regarded
as relevant if they are used directly for selection or output, or if they indirectly influence selection or output because, for
example, they are included in the calculation of an additional field. All of the text fields and HR additional fields that
were calculated at the event [additional calculations] are also regarded as relevant. The PROVIDE_FIELD switch can
be used to explicitly flag further fields as relevant. If two (or more) data records are merged, they are replaced by a new
data record. The new data record has the earliest start date (BEGDA) and latest end date (ENDDA) of the merged data
records.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 14/22

The PROVIDE switch enables you to determine whether the compression option is checked at all for the data records of
an infotype, or whether such data records are simply processed without being changed.

Standard system conduct

The compression option is only checked for infotypes that satisfy the following conditions:

- The infotype has time constraint 1 or 2

- The infotype does not have any subtypes

- The infotype is not a table infotype

- The infotype is not language-dependent

Furthermore, the compression option is not checked if the query uses just one split-dependent HR additional field of the
infotype. See the documentation on the ADD_FIELDS_SPLIT_DEP switch.

Values

'X' - Check compression option, and compress data if necessary.

' ' - Do not compress data.

Note

This switch is very similar to the PROVIDE ABAP statement.

Example

*HR [P0001]
*HR PROVIDE = 'X'

6.3 PROVIDE_FIELD

Description

If you set this switch, it only has an effect if the compression option is checked for the infotype (see the documentation
on the PROVIDE switch).

Two data records are only merged if all of their relevant fields are identical. Relevant fields are determined
automatically on the basis of the query definition. You can use the PROVIDE_FIELD switch to flag further infotype
fields as relevant so that they are also checked.

Standard system conduct

Relevant fields are determined automatically on the basis of the query definition. For information on which fields are
relevant, see the documentation on the PROVIDE switch.

Values

You must specify the technical name of the infotype field that is relevant to data record merging. This is a multiple-
value switch, which means you can specify as many infotype fields as you want.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 15/22

Note

The higher the number of fields specified by this switch, the lower the chances of two data records being merged. If you
use this switch to specify all of the fields belonging to an infotype, it is tantamount to deactivating the compression
option because two records must have at least one field that is different.

Example

*HR [P0001]
*HR PROVIDE_FIELD = 'PERSG'
*HR PROVIDE_FIELD = 'PERSK'

6.4 PRIMARY_INFTY

Description

Personnel Administration includes the principle of infotype views. A new infotype (the secondary infotype) is created
for an existing infotype (the primary infotype). The secondary infotype inherits the technical characteristics of the
primary infotype and supplements it with additional fields. Infotype data records are maintained simultaneously (on one
screen) for all of the fields belonging to both infotypes. From a technical point of view, they are still two separate
infotypes with separate database tables. To facilitate assigning data records to each other, they are stored with identical
keys. In the standard system, queries report on such infotypes as if they were not related to each other. Data records that
belong together are not, therefore, output together. However, you can ensure that they are by setting the
PRIMARY_INFTY switch. It must be set for the secondary infotype and include the name of the primary infotype.

Standard system conduct

No relationship is established between the primary and secondary infotype. All infotypes are processed as separate
entities. The system does not report on data records that belong together.

Values

The switch is set for the secondary infotype and includes the name of the primary infotype.

Note

The InfoSet must include the primary and secondary infotypes. The system only supports the infotype view concept in
Personnel Administration.

Example

*HR [P0288]
*HR PRIMARY_INFTY = 'P0021'

6.5 TIME_DEPENDENCE
A special feature of an infotype is its time constraint. It is defined each time an infotype is created, and determines the
time dependence and validity of the data records belonging to this infotype. The query reads the time constraint set for
an infotype, and then uses it to decide how to merge and then output the various data records. Data is only output if it is
valid in the specified reporting period. If the reporting period is a key date, the situation is simple: the system outputs all
of the data records that are valid on this key date. If each infotype has just one data record on this key date (which is the
case for all infotypes with time constraint 1 and 2), output consists of just one line containing the data of these

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 16/22

infotypes. If an infotype has more than one data record on this key date (infotype with time constraint 3), more than one
line is output for this infotype. The values of other infotypes are replicated. If two or more infotypes have more than one
data record on this key date, all existing data records are multiplied, which means that the number of output lines is the
product of the number of infotype data records.

The situation is more complicated if the reporting period is an interval rather than a key date. In this case, several data
records can also exist for infotypes with time constraint 1 or 2. The question is how to output the data records. Should
all of the data records be multiplied for the entire interval - as for a key date - or should the system only output infotype
data records together if they have common validity? Is it sufficient for the data records to have common validity on one
single day, or must they have common validity during the entire period?

The following algorithm has been implemented in the query: Infotypes are divided into three categories: period-
dominant, period-sensitive, and period-independent. Each infotype belongs to just one of these three categories. The
specified reporting period is divided into smaller intervals (so called splits). They cover the reporting period without
leaving any gaps. These splits are calculated on the basis of the start and end dates of period-dominant infotypes. Splits
are selected so that each start and end date of each and every data record (of period-dominant infotypes) coincides
exactly with a split limit. As soon as the splits have been calculated, each split is processed separately as if it were a key
date. The data records of period-dominant and period-sensitive infotypes that are valid on at least one day of the split
are then output for each split. Furthermore, all of the data records of period-independent infotypes are output
irrespective of whether they are valid in this split or not. The TIME_DEPENDENCE switch enables you to determine
the category to which the infotype belongs. This explains its influence on the calculation of splits and type of output.

Standard system conduct

All infotypes with the following characteristics are classified as period-dominant (DOMINANT):

- The infotype has time constraint 1 or 2

- The infotype does not have any subtypes

- The infotype is not a table infotype

- The infotype is not language-dependent

All of the remaining infotypes (that is, the infotypes that fail to meet at least one of the criteria) are classified as period-
sensitive (DEPENDENT). No infotype in the standard system is classified as period-independent (INDEPENDENT).

Values

'DOMINANT' - The infotype's data records influence the calculation of splits. Data records are output according to
their validity for calculated splits.

'DEPENDENT' – The infotype's data records do not influence the calculation of splits. However, they are output
according to their validity for calculated splits.

'INDEPENDENT' – The infotype's data records do not influence the calculation of splits. They are output for each
calculated split, irrespective of whether they are valid in the split or not.

Note

If a key date is selected as the reporting period, this switch has no effect because splits are not calculated and all data
records are output for the specified key date.

You are advised to use the 'period-independent' (INDEPENDENT) setting for infotypes if you are interested in
ascertaining the existence of data records, rather than their validity.

Example

*HR [P0006]
*HR TIME_DEPENDENCE = 'INDEPENDENT'

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 17/22

6.6 DATA_REQUIRED

Description

Data does not always exist for all of the infotypes output in a query. If data records do not exist, the standard query
response is to output initial values for the persons/objects concerned. Alternatively, you can suppress the output of such
persons/objects completely. To do this, use the DATA_REQUIRED switch. If the switch is set, a person/object is only
output if it has at least one data record in the reporting period.

Standard system conduct

The system outputs all persons/objects (that satisfy the selection conditions). If no data record exists for an infotype in
the reporting period, initial values are output for the fields in question.

Values

'X' – Persons/objects are only output if they have at least one data record in the reporting period.

' ' – Standard: the system outputs all persons/objects (that satisfy the selection conditions). If no data record exists
for one of these persons/objects, initial values are output.

Note

The SPLIT_DATA_REQUIRED switch is similar and facilitates even finer system control.

Example

*HR [P0004]
*HR DATA_REQUIRED = 'X'

6.7 SPLIT_DATA_REQUIRED

Description

After splits have been calculated (see the documentation on the TIME_DEPENDENCE switch), valid data records are
output for each calculated split. If no valid data record exists for an infotype of a split, initial values are output instead.
If you set the SPLIT_DATA_REQUIRED switch, no initial values are output. Output is suppressed for the entire split
instead.

Standard system conduct

If there are no valid data record for a split, initial values are output instead.

Values

'X' – Only those splits are processed the infotype has valid data records for.

' ' – Standard: all splits are processed. If the infotype has no valid data record, initial values are output.

Note

The DATA_REQUIRED switch is similar. While DATA_REQUIRED enables you to determine that an entire
person/object is skipped if data records are missing, SPLIT_DATA_REQUIRED enables you to determine that splits
are skipped if data records are missing.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 18/22

Example

*HR [P0004]
*HR SPLIT_DATA_REQUIRED = 'X'

6.8 NO_DUPLICATE_LANGU

Description

Some infotypes in Personnel Development contain language-dependent information. For example, infotype 1000 is
language-dependent because it contains the object name in all available languages. In the standard system, the query
outputs all of the data records that exist in the reporting period, which causes redundant information to be output in all
available languages. To prevent this, you can use the NO_DUPLICATE_LANGU switch. If it is set, data is output in
one language only. Redundant data records in translated languages are suppressed. The system first endeavors to output
the data record in the logon language. If this data record does not exist, the data record is selected in accordance with
language vector T778L.

Standard system conduct

The language dependencies of infotypes are ignored. All existing data records are processed and output (in all available
languages).

Values

'X' – Redundant data records in other (translated) languages are ignored. The system only takes the data record in the
logon language into account. If it does not exist, the data record with the highest priority (in accordance with language
vector T778L) is taken into account.

' ' - Standard: all data records are processed and output in all available languages.

Note

Example

*HR [P1000]
*HR NO_DUPLICATE_LANGU = 'X'

6.9 NO_INDIRECT_EVALUATION

Description

Some infotypes (such as 0008) contain wage types that are evaluated indirectly. The corresponding amounts are not
stored on the database (which merely contains the value 0). Instead, they are calculated dynamically at runtime (in
accordance with the Customizing settings).

Standard system conduct

At the [data determination] event, the system determines whether one of the wage types for infotypes 0008, 0014, 0015,
and 0052 is evaluated indirectly. If this is the case, a calculation is triggered to determine the wage type amount.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 19/22

Values

'X' – No check is performed to find indirectly evaluated wage types. An indirectly evaluated wage type is output with
the amount 0.

' ' – Standard: the system determines whether wage types are indirectly evaluated. If so, the actual wage type
amount is calculated.

Note

Indirectly evaluated wage types are calculated at the [data determination] event. Therefore, additional fields that access
the wage type amount do not need to perform the indirect valuation themselves. Instead, they can use the amount that
has already been calculated.

Example

*HR [P0008]
*HR NO_INDIRECT_EVALUATION = 'X'

6.10 IGNORE_WAGE_TYPE_OPERA

Description

Some infotypes (such as 0008, 0014, 0015, and 0052) contain deduction wage types that are included in calculations as
negative amounts. This is controlled by the operation indicator. The absolute wage type amount is stored on the
database (without a leading plus or minus sign). The operation indicator determines whether the wage type is a normal
wage type, or a deduction wage type.

Standard system conduct

In the standard system, the operation indicator is reported on for every wage type of infotypes 0008, 0014, 0015, and
0052. If the wage type is a deduction wage type, the wage type amount is multiplied by -1 so that it is assigned a
negative sign.

Values

'X' – The operation indicator is not evaluated. Just like normal wage types, deduction wage types are output without
a leading plus or minus sign.

' ' – Standard: the operation indicator is evaluated, and the wage type amount is provided with a negative sign, if
necessary.

Note

The operation indicator is evaluated, and the negative sign is set, just before the wage type amount is output. If
additional fields that access the wage type amount are defined, they work with the absolute amount (without a leading
plus or minus sign). If you want the calculation of an additional field to react to deduction wage types, the operation
indicator must be evaluated by the additional field itself .

Example

*HR [P0008]
*HR IGNORE_WAGE_TYPE_OPERA = 'X'

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 20/22

6.11 CASE_SENSITIVE_SEL

Description

If you select on fields containing texts, there are two ways of proceeding: The selection is either case-sensitive (exact),
or case-insensitive (tolerant). Case-sensitive means that all characters are taken into account with regard to whether they
are written in uppercase or lowercase. If you select 'Miller', the system only finds this exact string and ignores, for
example, 'miller' and 'MILLER'. Case-insensitive selections, which take no account of whether characters are written in
uppercase or lowercase, work differently. In the standard system, the query uses the tolerant (case-insensitive) selection
method. To make an exact (case-sensitive) selection, the CASE_SENSITIVE_SEL switch can be set. This also
improves performance because the system does not have to devote processing time to converting uppercase and
lowercase letters, and because data is selected directly from the database for all infotype fields. You are therefore
advised to set the CASE_SENSITIVE_SEL switch whenever it is possible to do so.

Standard system conduct

In the standard system, selections are case-insensitive (tolerant). This facilitates flexible selection options, but is not the
optimum solution as far as performance is concerned.

Values

'X' – All character-type fields are selected case-sensitively (exact uppercase/lowercase characters).

' ' – Standard: all character-type fields are selected case-insensitively (tolerant uppercase/lowercase characters).

Note

If object selection has been activated, Ad Hoc Query uses a different selection method than SAP Query. To ensure
optimum performance, the selection is always made case-sensitively (exactly). Setting the CASE_SENSITIVE_SEL
switch therefore has no effect on Ad Hoc Query selections. It only applies to select-options defined within SAP Query.

Example

*HR [P0002]
*HR CASE_SENSITIVE_SEL = 'X'

6.12 ADD_FIELDS_SPLIT_DEP

Description

This switch determines how HR additional fields are calculated. For information on the features of customer-specific
HR additional fields and on how to create such fields using the techniques used for HR additional fields in the standard
system, access the Implementation Guide (IMG) and choose 'Personnel Management' -> 'Human Resources Information
System' -> 'HR Settings for SAP Query' -> 'Additional Information on InfoSet Maintenance' -> 'Define Additional
Fields'. An additional field is calculated by implementing a function module that is accessed by the query (or, to be
more exact, accessed by the generated coding).

There are two points at which HR additional fields can be calculated for an infotype: at the [additional calculations] or
[additional data calculation] event. In the standard system, the calculation takes place at the [additional calculations]
event. The FM (for calculating the additional field) is accessed just once for each infotype data record (that exists at this
time).

If the second method (the [additional data calculation] event) is used, the FM is accessed at least once for each infotype
data record. This is because access occurs during split processing. For every calculated split (see the documentation on
the TIME_DEPENDENCE switch), the system processes all of the infotype data records that are valid for this split. If

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 21/22

an infotype data record is valid for more than one split, it is processed more than once. The additional field is also
calculated more than once.

The difference between the methods used to access the FMs lies in the way that the BEGDA_IT and ENDDA_IT
parameters are supplied with data. If access occurs at the [additional calculations] event, the start and end dates of the
current infotype data record are provided. However, if access occurs at the [additional data calculation] event, the start
and end dates of the current split are provided. All other parameters are supplied with identical data, irrespective of
which variant is used.

The event at which HR additional fields are calculated can be determined by the ADD_FIELDS_SPLIT_DEP switch.
You can also use the SPLIT_DEPENDENT_AF and SPLIT_INDEPENDENT_AF switches to define different system
conduct for individual HR additional fields.

The function and implementation of the additional field determines which of the two calculation methods is the right
one to use. In the vast majority of cases, it will be the first (split-independent) method. This is especially so if the
additional field is not time-dependent or only depends on the data of the current infotype data record. You only need to
calculate the additional field for each split in exceptional circumstances.

Standard system conduct

In the standard system, HR additional fields are calculated at the [additional calculations] event, which means they are
split-independent.

Values

'X' – All additional fields of the infotype are calculated split-dependently (at the [additional data calculation] event).

' ' – Standard: all additional fields are calculated split-independently (at the [additional calculations] event).

Note

This switch is only really relevant to customer-specific HR additional fields. Correct system conduct has already been
set up for the HR additional fields supplied by SAP (the calculation takes place split-independently at the [additional
data calculation] event for most HR additional fields). Furthermore, this switch should only be used by experienced
ABAP programmers who are quite sure about the effects of changed access on the calculation of additional fields.

From the point of view of performance, it is much better to calculate additional fields split-independently (that is, at the
[additional calculations] event). This dispenses with superfluous (identical) calculations, all of which lead to the same
result anyway. You should only flag additional fields as split-dependent if there is no other way of ensuring that the
additional field is calculated correctly.

Example

*HR [P9000]
*HR ADD_FIELDS_SPLIT_DEP = 'X'

6.13 SPLIT_DEPENDENT_AF

Description

HR additional fields can be calculated split-dependently or split-independently (see the documentation on the
ADD_FIELDS_SPLIT_DEP switch). The ADD_FIELDS_SPLIT_DEP switch changes the calculation method for all of
the HR additional fields of the specified infotype, whereas the SPLIT_DEPENDENT_AF and
SPLIT_INDEPENDENT_AF switches enable you to change system conduct for individual HR additional fields.

HR Query Generator – Defining Switches

© 2002 SAP AG Seite 22/22

Standard system conduct

In the standard system, all HR additional fields are calculated split-independently.

Values

The technical name of the additional field to be calculated split-dependently must be specified. This is a multiple-value
switch, which means you can specify as many additional fields as you want.

Note

This switch is only of interest to very experienced ABAP programmers, who should only use it if they are quite sure
about the effects of changed access on the calculation of additional fields.

Example

*HR [P9000]
*HR SPLIT_DEPENDENT_AF = 'MY_ADD_FIELD_1'
*HR SPLIT_DEPENDENT_AF = 'MY_ADD_FIELD_2'

6.14 SPLIT_INDEPENDENT_AF

Description

HR additional fields can be calculated split-dependently or split-independently (see the documentation on the
ADD_FIELDS_SPLIT_DEP switch). The ADD_FIELDS_SPLIT_DEP switch can be used to flag all of the HR
additional fields of an infotype as split-dependent. The SPLIT_INDEPENDENT_AF switch enables you to reset this
setting for individual HR additional fields.

Standard system conduct

In the standard system, all HR additional fields are calculated split-independently. This means there is no point in using
this switch unless you have already used the ADD_FIELDS_SPLIT_DEP switch to activate split-dependent
calculations.

Values

The technical name of the additional field to be calculated split-independently must be specified. This is a multiple-
value switch, which means you can specify as many additional fields as you want.

Note

This switch is only of interest to very experienced ABAP programmers, who should only use it if they are quite sure
about the effects of changed access on the calculation of additional fields.

Example

*HR [P9000]
*HR ADD_FIELDS_SPLIT_DEP = 'X'
*HR SPLIT_INDEPENDENT_AF = 'MY_ADD_FIELD_1'
*HR SPLIT_INDEPENDENT_AF = 'MY_ADD_FIELD_2'

	1	INTRODUCTION	3
	Defining Switches
	General Technique
	Generating queries after switch changes
	Checking the effects of a switch on a query
	Note

	Overview of Switches
	General Switches
	Infotype-specific Switches

	Procedure of a generated query
	Sketch of generated coding
	Structure and procedure of generated coding

	General Switches
	REPORT_CLASS
	Description
	Standard system conduct
	Values
	Note
	Example

	BL_ALLOW_DUP_LINES
	Description
	Standard system conduct
	Values
	Note
	Example

	PROCESS_LOCKED_RECORDS
	Description
	Standard system conduct
	Values
	Note
	Example

	PROC_PERNR_PARTIAL_AUT
	Description
	Standard system conduct
	Values
	Note
	Example

	PERSON_ONLY_ONCE
	Description
	Standard system conduct
	Values
	Note
	Example

	Infotype-specific Switches
	LAST_RECORD_ONLY
	Description
	Standard system conduct
	Values
	Note
	Example

	PROVIDE
	Description
	Standard system conduct
	Values
	Note
	Example

	PROVIDE_FIELD
	Description
	Standard system conduct
	Values
	Note
	Example

	PRIMARY_INFTY
	Description
	Standard system conduct
	Values
	Note
	Example

	TIME_DEPENDENCE
	Standard system conduct
	Values
	Note
	Example

	DATA_REQUIRED
	Description
	Standard system conduct
	Values
	Note
	Example

	SPLIT_DATA_REQUIRED
	Description
	Standard system conduct
	Values
	Note
	Example

	NO_DUPLICATE_LANGU
	Description
	Standard system conduct
	Values
	Note
	Example

	NO_INDIRECT_EVALUATION
	Description
	Standard system conduct
	Values
	Note
	Example

	IGNORE_WAGE_TYPE_OPERA
	Description
	Standard system conduct
	Values
	Note
	Example

	CASE_SENSITIVE_SEL
	Description
	Standard system conduct
	Values
	Note
	Example

	ADD_FIELDS_SPLIT_DEP
	Description
	Standard system conduct
	Values
	Note
	Example

	SPLIT_DEPENDENT_AF
	Description
	Standard system conduct
	Values
	Note
	Example

	SPLIT_INDEPENDENT_AF
	Description
	Standard system conduct
	Values
	Note
	Example

